Chapter 6 Review

1 Find the y-intercept of the equation. $y=-3 \cdot 7^{x}$

A 4
B -21
C -3
D 7
2 Use the formula $R=\log _{10} I$, where R is the measurement of the Richter scale and I is the intensity, to find the Richter scale measurement of an earthquake with intensity $12,000,000$.

F 0.70792
G 16.3004
H 7.0792
J 1.63004
3 The number of bacteria present in a culture after t minutes is given as $B=1000 e^{k t}$. If there are 4901 bacteria present after 7 minutes, find k.

A 1.589
B 0.215
C 0.227
D 11.126

4 How does changing the value of b affect the graph of an exponential equation of the form $y=a b^{x}$?

5 The projected worth (in millions of dollars) of a large company is modeled by the equation $y=271(1.07)^{x}$. The variable x represents the number of years since 1997. What is the projected annual percent of growth, and what should the company be worth be in 2008 ?

6 Write an exponential function to model the situation. Then estimate the value of the function after 5 years (to the nearest whole number). A population of 290 animals that increases at an annual rate of 9%.

7 Find the value of $\$ 1000$ deposited for 10 years in an account paying 6% annual interest compounded monthly.

8 Sketch the graph of $f(x)=3-2^{x}$, and identify the domain, range, and asymptote(s).

9 A piece of equipment costs $\$ 85,000$ new but depreciates 15% per year in each succeeding year. Find its value after 10 years.

Sketch the graph of the function, and identify the domain, range, and asymptote(s).
$10 y=\left(\frac{1}{3}\right)^{x+5}$

Simplify the expression.
$11 e^{x} \cdot 6 e^{3 x-1}$
$12 \sqrt[3]{125 e^{12 x}}$

15 Is $f(x)=7 e^{-2 t}$ an example of exponential growth or decay? Explain your answer.

16 Marion decides to invest \$1000 at 5\% interest compounded continuously. Find the value of the investment after two years.

17 Write the equation $\log _{16} 8=\frac{3}{4}$ in exponential form.

18 Evaluate the expression. $\log _{1 / 5} 125$

19 Evaluate $\ln e^{-4}$.

Find the inverse of the function.
$20 y=\log _{8} x$
$21 y=e^{x-1}$

Graph the functions. State the domain, range, and asymptote(s) of each.
$22 y=\log _{2}(x+1)$

$23 y=\ln x+4$

24 Condense the expression.
$\frac{1}{2} \log _{5} 16-3 \log _{5} x+4 \log _{5} y$
25 Expand the expression. $\ln \frac{2 x}{y^{4}}$
26 Evaluate $\log _{12} 782$ to three decimal places.

27 Solve for x. Round to four decimal places:
$e^{-3 x}=1.8$

28 Solve. $6^{-02 x}-3=7$

Solve the equation. Check for extraneous solutions.
$29 \log _{4}(x+3)=-2$
$30 \log _{4}(x+6)+\log _{4} x=2$

Solve the equation. Check for extraneous solutions.
$31 \ln (x+7)=\ln (3 x-5)$
$327 \log _{5}(x)-3=15$

Answer Section

1 C
2 H
3 C
4 Sample answer: For $b>0$, as the value of b increases, the curve slopes upward faster; that is, the value of y increases at a faster rate. For $0<b<1$, as the value of b increases, the curve slopes downward slower; that is, the value of y decreases at a slower rate.
5 7\%; \$570.41 million
$6 f(x)=290(1.09)^{x} ; 446$
7 \$1819.40

8
9 \$16,734.32

10
$116 e^{4 x-1}$
$125 e^{4 x}$
15 Decay
16 \$1105.17
$1716^{3 / 4}=8$
18 -3
19 -4
$20 \quad y=8^{x}$
$21 y=\ln x+1$

Domain: $x>-1$; Range: all real numbers

$\therefore:: \left.\begin{array}{r} y \\ 10 \end{array} \right\rvert\,$	
	\cdots
-10	$: 10 x$
-10	

Domain: $x>0$; Range: all real numbers
$24 \log _{5} \frac{4 y^{4}}{x^{3}}$
$25 \ln 2+\ln x-4 \ln y$
262.681
$27-0.1959$
$28 x=-6.425$
$29-\frac{47}{16}$
302
$31 x=6$
3262.712

