Halloween

Please pull out a clean sheet of paper and entitle it "Hot Seat Math."

Hot Seat Math

Geometry
Chapter 5
Test Review

What is the point of concurrency of the angle bisectors of a triangle?

What point(s) of concurrency of a triangle must lie in the interior of the triangle?

Is this triangle possible?

3, 8, 11

Point P is an incenter.

PT = 3. Find PU.

 \overline{GT} is a median.

Find FE if TE = 8

What is the point of concurrency of the altitudes of a triangle?

 \overline{PB} is an angle bisector.

Find $m \angle 2$ if $m \angle 2 = 7x + 5$ and $m \angle 1 = 9x - 5$.

Write the assumption you would make to start an indirect proof of the following statement.

Angle A has an odd measure.

 \overline{RK} and \overline{TI} are medians.

Find RK if DK = 3.4

Write the range of the third side:

16, 23

Determine which angle has the greatest measure.

Angle 8, angle 5, angle 7

 \overline{ME} and \overline{DL} are medians.

Find x if
$$ET = 3x + 2$$
 and $EM = 5x$

What is the point of concurrency of the perpendicular bisectors of a triangle?

Write the angles in greatest to least measure

Write an indirect proof:

Theorem 5.10

Given: $m \angle A > m \angle ABC$

Prove: BC > AC

